3 research outputs found

    QoS-aware Resource-utilisation Self-adaptive (QRS) Framework for Distributed Data Stream Management Systems

    Get PDF
    The last decade witnessed a vast number of Big Data applications in the science and industry fields alike. Such applications generate large amounts of streaming data and real-time event-based information. Such data needs to be analysed under the specific quality of service constraints, which must be done within extremely low latencies. Many distributed data stream processing approaches are based on the best-effort QoS principle that lack the capability of dynamic adaptation to the fluctuations in data input rates. Most of the proposed solutions tend to either drop some of the input data (load shedding) or degrade the level of QoS provided by the system. Another approach is to limit the data ingestion input rate using techniques like backpressure heartbeats, which can affect the worker nodes that causes an output delay. Such approaches are not suitable to handle certain types of mission-critical applications such as critical infrastructure surveillance, monitoring and signalling, vital health care monitoring, and military command and control streaming applications. This research presents a novel QoS-aware, Resource-utilisation Self-adaptive (QRS) Framework for managing data stream processing systems. The framework proposes a comprehensive usage model that encompasses proactive operations followed by simultaneous prompt actions. The simultaneous prompt actions instantly collect and analyse the performance and QoS metrics along with running data streams, ensuring that data does not lose its current values, whereas the proactive operations construct the prediction model that anticipate QoS violations and performance degradation in the system. The model triggers essential decision process for dynamic tuning of resources or adapting a new scheduling strategy. A proof of concept model was built that accurately represents the working conditions of the distributed data stream management ecosystem. The proposed framework is validated and verified. The framework’s several components were fully implemented over the emerging and prevalent distributed data streaming processing system, Apache Storm. The framework performs accurate prediction up to 81% about the system’s capacity to handle data load and input rate. The accuracy reaches up to 100% by incorporating abnormal detection techniques. Moreover, the framework performs well compared with the default round-robin and resource-aware schedulers within Storm. It provides a better ability to handle high data rates by re-balancing the topology and re-scheduling resources based on the prediction models well ahead of any congestion or QoS degradation

    QoS-Aware Self-Adapting Resource Utilisation Framework for Distributed Stream Management Systems

    No full text
    The last decade witnessed plenty of Big Data processing and applications including the utilisation of machine learning algorithms and techniques. Such data need to be analysed under specific Quality of Service (QoS) constraints for certain critical applications. Many frameworks have been proposed for QoS management and resource allocation for the various Distributed Stream Management Systems (DSMS), but lack the capability of dynamic adaptation to fluctuations in input data rates. This paper presents a novel QoS-Aware, Self-Adaptive, Resource Utilisation framework which utilises instantaneous reactions with proactive actions. This research focuses on the load monitoring and analysis parts of the framework. By applying real-time analytics on performance and QoS metrics, the predictive models can assist in adjusting resource allocation strategies. The experiments were conducted to collect the various metrics and analyse them to reduce their dimensions and identify the most influential ones regarding the QoS and resource allocation schemes

    Component Profiling and Prediction Models for QoS-Aware Self-Adapting DSMS Framework

    No full text
    Quality of Service (QoS) has been identified as an important attribute of system performance of Data Stream Management Systems (DSMS). A DSMS should have the ability to allocate physical computing resources between different submitted queries and fulfil QoS specifications in a fair and square manner. System scheduling strategies need to be adjusted dynamically to utilise available physical resources to guarantee the end-to-end quality of service levels. In this paper, we present a proactive method that utilises a multi-level component profiling approach to build prediction models that anticipate several QoS violations and performance degradations. The models are constructed using several incremental machine learning algorithms that are enhanced with ensemble learning and abnormal detection techniques. The approach performs accurate predictions in near real-time with accuracy up to 85% and with abnormal detection techniques, the accuracy reaches 100%. This is a major component within a proposed QoS-Aware Self-Adapting Data Stream Management Framework
    corecore